A Decomposition-based Approach to Modeling and Understanding Arbitrary Shapes
نویسندگان
چکیده
Modeling and understanding complex non-manifold shapes is a key issue in shape analysis and retrieval. The topological structure of a non-manifold shape can be analyzed through its decomposition into a collection of components with a simpler topology. Here, we consider a representation for arbitrary shapes, that we call ManifoldConnected Decomposition (MC-decomposition), which is based on a unique decomposition of the shape into nearly manifold parts. We present efficient and powerful two-level representations for non-manifold shapes based on the MC-decomposition and on an efficient and compact data structure for encoding the underlying components. We describe a dimension-independent algorithm to generate such decomposition. We also show that the MC-decomposition provides a suitable basis for geometric reasoning and for homology computation on nonmanifold shapes. Finally, we present a comparison with existing representations for arbitrary shapes.
منابع مشابه
Scenario-based modeling for multiple allocation hub location problem under disruption risk: multiple cuts Benders decomposition approach
The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of ...
متن کاملPredicting Young’s Modulus of Aggregated Carbon Nanotube Reinforced Polymer
Prediction of mechanical properties of carbon nanotube-based composite is one of the important issues which should be addressed reasonably. A proper modeling approach is a multi-scale technique starting from nano scale and lasting to macro scale passing in-between scales of micro and meso. The main goal of this research is to develop a multi-scale modeling approach to extract mechanical propert...
متن کاملEfficient architectural structural element decomposition
Decomposing 3D building models into architectural elements is an essential step in understanding their 3D structure. Although we focus on landmark buildings, our approach generalizes to arbitrary 3D objects. We formulate the decomposition as a multi-label optimization that identifies individual elements of a landmark. This allows our system to cope with noisy, incomplete, outlier-contaminated 3...
متن کاملParameterizing Arbitrary Shapes via Fourier Descriptors for Evidence-Gathering Extraction
According to the formulation of the Hough Transform, it is possible to extract any shape that can be represented by an analytic equation with a number of free parameters. Nevertheless, the extraction of arbitrary shapes has centered on nonanalytic representations based on a table which specifies the position of edge points relative to a fixed reference point. In this paper we develop a novel ap...
متن کاملComputing and Visualizing a Graph-Based Decomposition for Non-manifold Shapes
Modeling and understanding complex non-manifold shapes is a key issue in shape analysis and retrieval. The topological structure of a non-manifold shape can be analyzed through its decomposition into a collection of components with a simpler topology. Here, we consider a decomposition of a non-manifold shape into components which are almost manifolds, and we present a novel graph representation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011